Senin, 11 Mei 2020

Tugas 3 : Pengantar Komputasi Modern

0


Artikel Komputasi dan Paralel Processing

Komputasi
Setiap jenis perhitungan atau penggunaan teknologi komputer dalam pengolahan informasi. Perhitungan adalah proses setelah yang jelas model yang dipahami dan dinyatakan dalam suatu algoritma , protokol , topologi jaringan , dll Perhitungan juga merupakan subyek utama dari ilmu komputer : menyelidiki apa yang dapat atau tidak dapat dilakukan dengan cara komputasi.
Perhitungan dapat diklasifikasikan oleh setidaknya tiga kriteria ortogonal: digital vs analog , sekuensial vs paralel vs bersamaan , bets vs interaktif .
Dalam prakteknya, perhitungan digital sering digunakan untuk mensimulasikan proses alam (misalnya, perhitungan Evolusi ), termasuk yang lebih alami dijelaskan oleh model analog perhitungan (misalnya, jaringan syaraf tiruan ).

Parallel Processing
Dalam komputer, pemrosesan paralel merupakan pengolahan dari Program instruksi dengan membagi mereka di antara beberapa prosesor dengan tujuan untuk menjalankan program dalam waktu kurang. Dalam komputer paling awal, hanya satu program berlari pada suatu waktu. Sebuah program komputasi-intensif yang memakan waktu satu jam untuk menjalankan dan menyalin Program tape yang mengambil satu jam untuk menjalankan akan mengambil total dua jam untuk menjalankan. Bentuk awal dari pemrosesan paralel memungkinkan eksekusi interleaved kedua program bersama-sama. Komputer akan memulai operasi I / O, dan sementara itu sedang menunggu operasi untuk menyelesaikan, itu akan mengeksekusi program prosesor-intensif. Waktu eksekusi total untuk dua pekerjaan akan menjadi sedikit lebih dari satu jam.
Peningkatan berikutnya multiprogramming . Dalam sistem multiprogramming, beberapa program telah dikirim pengguna yang masing-masing diperbolehkan untuk menggunakan prosesor untuk waktu yang singkat. Untuk pengguna tampak bahwa semua program yang melaksanakan pada saat yang sama. Masalah pertama muncul pertentangan sumber daya di sistem ini. Permintaan eksplisit untuk sumber daya menyebabkan masalah dari kebuntuan . Kompetisi untuk sumber daya pada mesin tanpa dasi-melanggar instruksi mengarah pada rutin critical section .
Langkah berikutnya dalam pengolahan paralel adalah pengenalan multiprocessing . Dalam sistem ini, dua atau lebih prosesor berbagi pekerjaan yang akan dilakukan. Versi awal memiliki master / slave konfigurasi. Salah satu prosesor (master) diprogram untuk bertanggung jawab atas semua pekerjaan dalam sistem, yang lain (budak) dilakukan hanya tugas-tugas itu diberikan oleh master. Pengaturan ini diperlukan karena tidak kemudian mengerti bagaimana program mesin sehingga mereka bisa bekerja sama dalam pengelolaan sumber daya sistem.

Hubungan Antara Komputasi Modern dengan Paralel Processing
Komputasi Paralel merupakan teknik untuk melakukan komputasi secara bersamaan dengan memanfaatkan beberapa komputer yang independen secara bersamaan. Biasanya digunakan untuk kapasitas yang pengolahan data yang sangat besar (lingkungan industri, bioinformatika dll) atau karena tuntutan komputasi yang banyak. Pada kasus yang kedua biasanya ditemukannya kalkulasi numerik untuk menyelesaikan persamaan matematis di bidang fisika (fisika komputasi), kimia (kimai komputasi) dll. Untuk melakukan berbagai jenis komputasi paralel diperlukan infrastruktur mesin paralel yang terdiri dari banyak komputer yang nantinya dihubungkan dengan jaringan dan mampu bekerja secara paralel untuk menyelesaikan suatu masalah. Untuk itu maka digunakannya perangkat lunak pendukung yang biasa disebut middleware yang berperan untuk mengatur distribusi antar titik dalam satu mesin paralel. Selanjutnya pemakai harus membuat pemrograman paralel untuk merealisasikan komputasi. Salah satu middleware yang asli dikembangkan di Indonesia adalah OpenPC yang dipelopori oleh GFTK LIPI dan diimplementasikan di LIPI Public Center.
Komputasi paralel berbeda dengan multitasking. Multitasking itu sendiri adalah komputer dengan processor tunggal yang dapat mengeksekusi beberapa tugas secara bersamaan. Sedangkan komputasi paralel menggunakan beberapa processor atau komputer. Selain itu komputasi paralel tidak menggunakan arsitektur Von Neumann. Untuk lebih memperjelas lebih dalam mengenai perbedaan komputasi tunggal (menggunakan 1 processor) dengan komputasi paralel (menggunakan beberapa processor), maka kita harus mengetahui 4 model komputasi yang digunakan, yaitu:
  • SISD
Merupakan singkatan dari Single Instruction, Single Data yaitu satu-satunya yang menggunakan arsitektur Von Neumann, karena pada model ini hanya menggunakan 1 processor saja. Oleh karena itu model ini dikatakan sebagai model untuk komputasi tunggal. Sedangkan ketiga model lainnya merupakan komputasi paralel yang menggunakan beberapa processor. Beberapa contoh komputer yang menggunakan model SISD adalah UNIVAC1, IBM 360, CDC 7600, Cray 1 dan PDP 1.
  • SIMD
Merupakan singkatan dari Single Instruction, Multiple Data. Model ini menggunakan banyak processor dengan instruksi yang sama, namun dengan data yang berbeda. Sebagai contoh kita ingin mencari angka 27 pada deretan angka yang terdiri dari 100 angka, dan kita menggunakan 5 processor. Pada setiap processor kita menggunakan algoritma atau perintah yang sama, namun data yang diproses berbeda. Misalnya processor 1 mengolah data dari deretan / urutan pertama hingga urutan ke 20, processor 2 mengolah data dari urutan 21 sampai urutan 40, begitu pun untuk processor-processor yang lain. Beberapa contoh komputer yang menggunakan model SIMD adalah ILLIAC IV, MasPar, Cray X-MP, Cray Y-MP, Thingking Machine CM-2 dan Cell Processor (GPU).

  • MISD
Merupakan singkatan dari Multiple Instruction, Single Data. MISD menggunakan banyak processor dengan instruksi yang berbeda namun mengolah data yang sama. Hal ini merupakan kebalikan dari model SIMD. Sebagai contoh, dengan menggunakan kasus yang sama pada contoh model SIMD namun cara untuk menyelesaikannya yang berbeda. Pada MISD jika pada komputer pertama, kedua, ketiga, keempat dan kelima sama-sama mengolah data dari urutan 1-100, namun algoritma yang digunakan untuk teknik pencariannya berbeda di setiap processor. Sampai saat ini belum ada komputer yang menggunakan model MISD.
  • MIMD
Pada Multiple Instruction, Multiple Data biasanya menggunakan banyak processor dengan setiap processor memiliki instruksi yang berbeda dan mengolah data yang berbeda. Namun banyak komputer yang menggunakan model MIMD juga memasukkan komponen untuk model SIMD. Beberapa komputer yang menggunakan model MIMD adalah IBM POWER5, HP/Compaq AlphaServer, Intel IA32, AMD Opteron, Cray XT3 dan IBM BG/L.
Jadi dapat disimpulkan hubungan antara komputasi modern dengan paralel processing adalah sama-sama membutuhkan processor atau core yang banyak untuk melakukan serangkaian tugas.

Implementasi Komputasi Paralel pada Perusahaan(PIXAR)
Pada bagian ini penulis akan membahas salah satu implementasi komputasi parallel pada dunia bisnis yaitu pada dunia perfilman yaitu rendering film. Kemajuan di bidang komputasi, khususnya dalam bidang komputer grafis memberikan kemudahan untuk memodelkan suatu benda dalam alam 3 dimensi virtual di komputer. Kita dapat membuat suatu benda dalam wujud 3 dimensi dan mengubah-ubah sudut pandang, menentukan pencahayaan, bahkan menyusun gerakan benda dalam alam 3 dimensi virtual tersebut. Perkembangan ini muncul dari kebutuhan di bidang manufaktur untuk memiliki komputer yang dapat membantu perancangan (computer aided design-CAD). Ditemukannya teknik-teknik dan metoda rendering suatu obyek 3 D ke dalam media 2 D membuat benda yang dihasilkan oleh perangkat lunak ini menjadi semakin nyata dan menyerupai aslinya.

Komputasi Paralel mempunyai prinsip yang bersesuaian dengan algoritma Divide and Conquer, yaitu membagi-bagi proses menjadi bagian-bagian yang cukup kecil dan memungkinkan untuk dikerjakan oleh sebuah unit komputasi.
Terdapat 2 klasifikasi parallel computer yang penting, yaitu : Sebuah komputer dengan banyak unit komputasi internal, atau lebih dikenal sebagai Shared Memory Multiprocessor. Beberapa komputer yang terhubung melalui sebuah jaringan, atau lebih dikenal sebagai Distributed Memory Multicomputer.

Pada bagian ini yaitu pada rendering Film digunakan unit Komputasi parallel Distributed Memory Multicomputer. Hal ini dikarenakan computer yang digunakan untuk membuat rendering filmnya adalah Kluster Komputer. Kluster computer adalah proses menghubungkan beberapa computer agar dapat bekerja secara bersama-sama dengan sebuah jaringan sebagai media penghubungnya.

Komponen kluster biasanya saling terhubung dengan cepat melalui sebuah interkoneksi yang sangat capat, atau juga melalui jaringan local (LAN). Keuntungan memakai Kluster Komputer ini yaitu pemrosesan dapat dilakukan lebih cepat karena mempunyai mesin-mesin yang masing-masing multiprocessor. Terdapat incremental Scalability dimana penambahan system-sistem baru dengan inkremen yang kecil. Dalam Kluster Komputer kegagalan yang terjadi di dalam satu node tidak berarti atau disebut dengan “Loss of service”. Dan yang terakhir yaitu biaya yang dibutuhkan lebih murah, hal ini dikarenakan Kluster computer dapat menghasilkan power komputasi yang sama atau lebih tinggi dari computer parallel sebenarnya.

3D Rendering merupakan salah satu proses yang sangat penting dalam melakukan pengolahan gambar 3D. Tanpa dirender suatu gambar yang diolah oleh perangkat lunak animasi 3D hanya akan tampil dalam bentuk kumpulan point dan wireframe sederhana. Proses render melakukan “pembungkusan” tekstur pada objek yang bersesuaian sesuai cahaya yang datang pada objek tersebut. Namun proses render membutuhkan daya komputasi yang sangat besar karena banyaknya titik koordinat yang harus dikomputasi, terutama jika data 3D yang diolah cukup rumit.

3D Rendering terdiri dari proses yang bertujuan untuk membentuk sebuah gambar dari sebuah model yang dibentuk oleh perangkat lunak animasi, model tersebut berisi data geometri, titik pandang, tekstur dan cahaya yang diperlukan untuk membuat gambar yang utuh.3D Rendering merupakan proses yang sangat penting dan telah digunakan untuk berbagai macam penggunaan, seperti program permainan komputer, efek spesial pada film dan program simulasi.

Salah satu cara untuk memecahkan masalah tersebut adalah dengan menggunakan algoritma Divide and Conquer yang diterapkan kedalam metode Komputasi Parallel. Divide and Conquer merupakan salah satu strategi algoritma yang memecah suatu masalah besar menjadi beberapa bagian untuk kemudian dikerjakan satu persatu. Dalam Komputasi Parallel tiap-tiap bagian dikerjakan oleh unit pemrosesannya masing-masing, sesuai dengan kesepakatan Divide pada awal komputasi. Komputasi Parallel terbukti jauh lebih efektif untuk melakukan rendering objek 3D dibanding hanya menggunakan sebuah unit komputasi. Sebagai contoh suatu perusahaan animasi asal Jepang, membutuhkan waktu 165 tahun jika proses render yang dilakukan untuk membuat animasi berdurasi 100 menit hanya menggunakan sebuah unit komputasi. Sedangkan ketika perusahaan tersebut menggunakan metode Komputasi Parallel, proses tersebut hanya membutuhkan waktu 1 tahun saja.

Salah satu masalah kompleks yang hingga kini masih membutuhkan kemampuan komputasi yang besar adalah melakukan proses render terhadap objek 3D. Proses render objek 3D sendiri membutuhkan waktu yang cukup lama, terlebih jika objek yang diberikan cukup rumit. 

Sebenarnya operasi render objek 3D hanya merupakan kumpulan dari beberapa operasi primitif, namun operasi primitif yang dilakukan pada proses render sangatlah banyak. Untuk itu digunakan metode Komputasi Parallel sehingga tiap-tiap operasi primitif yang dilakukan dapat dikerjakan dengan menggunakan algoritma Divide and Conquer agar tiap bagian dari operasi Divide pada perhitungan yang dilakukan dapat dikerjakan oleh masing-masing unit komputasi. Beberapa operasi primitif yang digunakan dalam 3D Rendering adalah operasi penghitungan jarak antara 2 titik,operasi perkalian bilangan bulat yang besar. Tentunya hampir kesemua operasi primitif tersebut dapat dipecahkan dengan menggunakan algoritma Divide and Conquer sehingga menjadikan proses 3D Rendering sangat cocok untuk diselesaikan dengan algoritma Divide and Conquer.

Selain itu, perfilman yang mengandalkan spesial efek merupakan salah satu industri yang paling banyak mengandalkan HPC Cluster. Rangkaian film The Lord of the Ring yang akan diputar pada pertengahan Desember ini merupakan salah satu film yang paling banyak mengandalkan digital content creation (DCC) dan menuntut kapasitas pemrosesan yang besar untuk rendering gambar- gambar beresolusi tinggi dalam berbagai format.

WETA Digital, sebuah perusahaan animasi dan spesial efek yang bermarkas di Selandia Baru, membangun fasilitas render farm berbasis cluster hingga skalabilitas ribuan prosesor untuk mengerjakan film ini. Jika sekuel Lord of The Ring dikerjakan dengan personal computer (PC) yang tercepat saat ini, dibutuhkan waktu lebih dari 10 tahun untuk menyelesaikan proses rendering. Bagi para artis grafis 3D atau animator, hal yang paling menyita waktu adalah menunggu proses rendering.

Beberapa waktu lalu Pixar, sebuah studio 3D spesial efek membangun HPC Cluster baru berbasis 1.920 prosesor Intel Xeon untuk menggantikan mesin Sun Enterprise Render Server yang dipakai untuk produksi film Monster Inc.Oracle, vendor aplikasi database terkemuka telah mendukung teknologi cluster dengan meluncurkan Oracle 9i.

Referensi

Aswendy. 2016. Artikel Komputasi dan Paralel Processing. https://aswendy.wordpress.com/2016/05/16/artikel-komputasi-dan-paralel-processing/  . (12 Mei 2020).

Mahadisuta. 2012. Implementasi Komputasi Paralel Dalam Dunia Bisnis. https://www.mahadisuta.net/2012/12/implementasi-komputasi-paralel-dalam.html . (12 Mei 2020).